LLMs | NLP | Text Mining
Big Data | Data Engineering | MLOps
Machine Learning
Deep Learning | Computer Vision | Image processing
Business Intelligence | Dashboarding | Data Visualization
Financial Analytics | Time series analysis | Forecasting
Web Scraping and data manipulation
Statistical analysis
Spatial data analysis and visualization
DATA SCIENCE
Python
NumPy, Pandas, Matplotlib, Seaborn, scikit-learn, TensorFlow, Keras, PyTorch, OpenCV, BeautifulSoup, Transformers, NLTK, OpenAI, statsmodels, FastAPI
R
tidyverse, dplyr, ggplot2, shiny, flexdashboard, caret
SQL
Queries, Data Modification, Views, Procedures, Jobs
BIG DATA | DATA ENGINEERING | MLOPS
Hadoop | Apache Spark
Apache Kafka
Apache Airflow
NoSQL databases (MongoDB, Neo4j, Pinecone)
MLFlow | Weights and Biases
Docker | Kubernetes
Azure | AWS
Git | GitHub | GitHub Actions
Shell | Bash
BUSINESS INTELLIGENCE
Power BI
Tableau
Qlik Sense
Oracle BI
Looker Studio
ANALYTICS
Alteryx
AMPL
@Risk | Crystal Ball
STATISTICAL AND MATHEMATICAL SOFTWARE
R
Matlab
Stata
SPSS
Minitab
OTHERS
Figma
LaTeX
VBA
MS Office
Critical analysis of beauty standards in ML
This project critically analyzes the beauty standards embedded within the CelebA dataset used for facial recognition in ML. It explores the societal, cultural, and ethical implications of these standards, shedding light on biases and subjectivity in the field.
English (Proficient)
Spanish (Native)